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SPECTRAL-ELEMENT AGGLOMERATE COARSENING IN AMGE
PANAYOT S. VASSILEVSKIf

ApsrracT. In this talk we will present a highly accurate coarsening algorithin for con-
structing coarse finite element spaces to be used in algebraie multigrid methods designed
for finite clement problems on generally unstructured meshes. The new algorithm relies
on removing certain percentage of the high oscillating components from the spectrum
of local stiffness matrices corresponding to clement agglomerations. By doing so, one
is gunaranteed that the hierarchical complement finite element subspace gives rise to a
well conditioned matrix. The coarsening consists of an agglomeration step and of com-
puting a few minimal cigenvectors of the corresponding assembled agglomerate stiffness
matrix. The method requires access to the individual clement matrices. Based on the
topological agglomeration algorithms we employed one is able to define coarse elements
and coarse element matrices thus allowing for recursive use of the same algorithm.
Some numerical illustration for elliptic problems will also be given.
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1. AMG for finite element problems; defini-
tion(s)

What is AMG for finite element problems 7
One needs a coarse space V., subspace of the

original finite element space V. It is desirable
that:



e the coarse space V. admits a “weak’”’ approx-
iImation property, i.e., for each v € V one
should be able to find a v. € V. such that, for
a ‘'small’ constant 6,

1
|lv — vello < 60 a(v, v)2  uniformly in v eV,

Here, ||.|lo is a weaker (typically Lo—norm)
norm than the energy one.

In geometric MG, one has 0 ~ h.— the coarse
mesh—size.

e A target property in AMG for finite element
problems, is that the interpolation mapping P
be approximate harmonic, in the sense that,
for a “small” constant n, uniformly in v. € V,
one has

a(ve, ve) <m inf  a(v, v).
v v|,=ve|,
In matrix—vector notation this reads:

T

VZACVC = VZPTAPVc < 7n inf { Ve A

Vf Ve

Vf
Ve |



Theorem 1 (Two—grid convergence) Assume
inexact coarse solve, i.e., B ~ A., such-that

0 <vI(Be—A)ve <bvIAewve,  for all ve € V.
Also, assume that,
vI((D+L)DHD+U) - A)v < éo(A)|v]3,
vIiD-1ly < wl A=y,
vILD™IUv < ko(A)|V|3,
Here,

T
vt Av
o(A) = sup 5 -
v HVHO

T he following spectral equivalence estimate holds:

0 <v'(Btg— A)v <max[2y+b, § +x]o v] Av.

Here, o is a constant in the following stability
estimate:

Q(A)HV]_H% + (PVC)TA(PVC) <ovlav.
for a particular decomposition v = vy + Pv,.

In the present application ||v]|g = VvT Av (hence
o(A) =1).



2. Building interpolation based on energy
minimization principle;

2.1. Localizing estimates

In AMG one attempts to localize the estimates
that provide “approximation property’” and builds

interpolation mapping which does “a best” job
locally.

In AMGe, (given coarse grid) one computes P
row-wise, such that

(P 2
sup Iv — (Pvollg min, v=|"'/1.
v v AQ(i)V Ve




Neighborhood (i) consisting of triangular elements about dof "2''.

Here, (i) is a mesh—neighborhood of ¢ which
contains the coarse dofs “¢" (forming the com-
ponent v, of v) that are used to interpolate to q.
The complementary set of dofs (“i" and “x") to
the interpolatory coarse dofs forms the vy com-
ponent of v. The matrix Ag;y is a local matrix
corresponding to the neighborhood €2(7) and in
the AMGe method it is assembled from the local
element matrices of the elements that form (7).

One notices, that local estimates imply global
estimate.



P | A A
— fc N — i fe
Let, P = [ 7 } and Aq;) = { of Acc } [hen,

since v— Pv.=| '/ _éjfcvc } one gets, that P

solves the following minimization problem,

012
A\
R

: 9
= min, A 2—
v VTYTAQ(?;)YV

Of},Yz[I, P].

Since the numerator is independent of v, we can
replace v, with t v, any ¢t € R and optimize with
respect to t. This leads to

VO 2
o sup B R
v:|: vy ] t VfAffo+2tVf(AffPfc—|—Afc)Vc+t vl P AQ(Z-)PVC

Ve

The denominator is minimized for

- _V’—JZ':(AffPfc + Afc)Vc
vIPTAGPve

which leads to, the following identity,



Iv—(Pvol3 _

SL\J/-D VTAQ(Z-)V
v
Sup padl: 7 VS [ 0 } |
v . (V?(AffPfC—Q—AfC)Vc)
Vf Affvf_ VZPTAPVC

Then, it is clear that the best P = ( P{C } which

solves the minimization problem, will satisfy,
AffPfc + Afc = 0.

—1 )
Le., Pp. = — (Aff> Ar. and the interpolation
weights, the row of P correspondilng to dof 2, are
given by the ¢th row of — (Aff) Afc.

We note, that in order to apply the AMGe method,
the following critical assumption was made; namely,
that one allows

“access to the individual element matrices’”
(on the fine grid).



3. Spectral—element agglomerate coarsen-
iIng in AMGe :

T he selection of coarse dofs requires the follow-
ing steps:

e an element agglomeration step;

e computing topology of the agglomerated el-
ements, especially their vertices and faces;

e computing eigenvectors and eigenvalues of
local Schur complements associated with the
interior of the agglomerated elements and the
interior of the faces of the agglomerated el-
ements. The vertices of the agglomerated
elements and the first few of the computed
eigenvectors are the coarse dofs.

e Creating the same information on the coarse
level; namely, coarse elements and coarse el-
ement matrices.



Let Ap be a local matrix corresponding to an
agglomerated element E. Let Sg be the Schur
complement of Ap corresponding to the interior
dofs of F, i.e.,

A — Ay Arp | } interior dofs
E=\ Ag; App | } boundary dofs
Then Sp = Ay — AIB<ABB)—1ABI- Let Qi, k=
1,2,..., be the eigenvectors of Sg. The vectors
_ | @
for k=1,2,...,q, form part of the coarse basis.

Similarly, given a face (AEface F') one assembles
a local matrix Ap of fine grid elements about
the interior dofs of F. Then one computes the
(interior) AEface Schur complement Sp and its
first p eigenvectors q,]C of Sp. The actual coarse
basis vectors equal

I
— | 9
0 M



Finally, one considers the vertex dofs ¢ and forms
0 -

0
the unit vectors e¢; = | 1 |. The coarse basis
O

0
vectors are e;, qi and Qi Note that these are
vectors of the fine—gird dimension. The coarse
dofs are the coefficients in the expansion of the
coarse vectors

Ve = > cie; + > cpdg + X Q.
Note that the interpolation matrix

P = [(ei)7 (Qk)7 (Qk)]7

IS orthogonal.

It is clear that the components {e;}, {qi} and
{Q} are orthogonal; first, the three groups have
non—intersecting support, and secondly within each
group the vectors are orthogonal by construction
(as eigenvectors of symmetric matrices).



3.2. Analysis of the two—grid method

Consider the complementary (hierarchical) set of
degrees of freedom, {ax}r>p, and {Qrir>q It
spans the hierarchical complement space V¢. The

coarse space, spanned by {e;}, {qi}tr<p and {Qr}r<q
is denoted by V.. Note that

V p— Vf @ Vc,
is a direct, and even orthogonal decomposition.

The restriction of A to the subspace Vf will be
denoted by Aff. We now state the first main
result.

Lemma 1 The block Aff of A is well—conditioned.

Proof: This is seen by construction. Let Ve €
Vg, that is, v = vy iIs a vector with vanishing
coarse—grid component.

For some constants Cr (depending on the num-
ber of AEfaces of AEs), using well known min-
imization properties of Schur complements, one
gets



QV}Z:A]C]CVJC == QVTAV

::2§2V§AEVE
E
=> Cg > \%;4EVEy+-§:\€;4EVE
E F. FeoFE - E -
FeF E. FeoF E
> Z CFVFSFVF—l_ZVI SEVI
FeF
> > CF)‘p—l—l[SF]VFVF T Z Ag+1[SEIVI VI
FeF
> min {mFm CrAp+1[SF], mEm )\q+1[SE]} ||Vf|| :

I = E\OFE is the interior of £ and the components
vp and vy of v, are orthogonal; that is,

2 _ 2 2
Ivi oo = > IVFIF 4 IIvel3.
FeoF

This implies,

min {mﬁ_{n CFAp_,_l[SF], ming /\q+1[SE]} ||vf”2

T
SQVfAffo ,
< amaxg [|Aplliivell”.



The constants g and Cp = min{CE_, CE+},
where FF = 0E_NOE4 (F is formed from the two
adjacent AEs, E_ and E.), depend only on the
topology of the AEs. More specifically @1]5 equals
the number of AEfaces of E.

Remark 1 The above proof actually shows that
if one diagonally scales A (corresponding to the
AEface—interior dofs and the AE—interior dofs)
the resulting matrix will have condition number
bounded by

1 | —1
S A min ¢ min —CpA Srl, A :
up | gl (min{ min ZCrA,1[SF], AgalSEl} )



Lemma 2 The following approximately harmonic
properties hold:

V}:AVJC < Cy Igf (Vf+VC)TA(Vf—|—Vc), VfEVf

TAVC < Oy 1re1f (Vf+vc) A(Vf+Vc) Ve € V.
Vi f

Proof: The above two inequalities are equivalent
to each other, since they are both equivalent to
the following strengthened Cauchy—-Schwarz in-
equality,

1
aves (1= 3] v v

That is why, we prove the first one only. One has,
for each AE F and its element matrix Ag, by rear-
ranging the terms and using basic minimization
properties of Schur complements of symmetric



positive semi—definite matrices,

(Ve + Vf)TA(Vc + Vf)
= Z(VC + Vf)TAE(VC +vy)

> ;E Crp(ve+ vl Sp(ve + ka)
—}—% %(Vc + Vf)TSE(Vc +vy)
— ; CF(Vf)TSva + -;—ZE:(vf)TSEVf
+ ; Cr(ve)! Spve + —;— %(VC)TSEVC'

We used here the fact that the components \Li
and v, restricted to AEface—interior and AE-—
interior are Sy or Sg-orthogonal, respectively.

By omitting the terms involving v. (which are
non—negative) one ends up with the estimate,



'S3V 9yl 10 ABojodol syl uo Ajuo puadsp Uy
pue 77 ‘SJBy S1URISUOD BY] ‘T BLUWST Ul Se ‘uleby

Iay (Fa)x

. Ehal {[HS]I+5Y ‘gt E{ﬁﬁuj} uwu} Uit 7t =
H
J[AE[VL{AZ X
v {[gS]H"b‘( ‘[Lg]t T %%d} uwu} uitu 7

4
A

HENG NS all|| Ay ||~ X
HO>H
vl {[HS]I+5‘< 4] T+ Ui }U!w} uitu rf =

HO=>4
a1 N T 4+ | [Ts) Ty | it <
H é H
CAEPNIery T+DYZ— + [ I8] T+ dp " <
H
fatlg (fA)Z +Iadg (P K <

(fA + DA)VLL(J[A + °A)

S




The following results concerns the choice of smoothet

Lemma 3 Consider By the symmetric Gauss—
Seidel preconditioner to A. Then the following
inequality holds for any \J &S Vf

0 < V}C(Bff—A)vf <covliav, v= vtve, for all v,

where the constant C = oCy; C4 is from Lemma
2 and o depends on the condition number ofAff.

Then, on the general two—grid convergence re-
sult shown earlier holds based on the three Lem-
mas 2, 1 and 3.

The spectral AMGe can be viewed also as a sim-
ple change of basis to a more stable two—level
hierarchical one (which also provides orthogonal
decomposition of V = V@ V¢). Thus a fur-
ther better interpolation may be needed, after
the change of basis has been performed.



4. Sparse element matrix topology and ele-
ment agglomeration ’

4.1. Main definitions and constructions

By definition, an element is a “list of degrees of
freedom”, e = {dy,...,dn.},

and we are given an overlapping partition {e} of
D (the set of degrees of freedom).

In AMGe, each element is associated with an el-
ement matrix Ae, an ne X ne Mmatrix, which here
we assume to be symmetric and positive semi—
definite.

The global matrix A is assembled from the in-
dividual element matrices Ae in the usual way,
l.e.,

wliAv =Y wlAcve.
€



Here, ve = v|_, i.e., restriction to subset (e C D).

In general AMG, we will only need the “element
topology’, and not the element matrices.



4.2. Graph based algorithms for coarsening
The coarsening algorithm based on the “sparse
matrix element topology’ is a straightforward ex-
tension of the standard finite element method,
now in a graph setting.

Namely, given the following graph,

“element_node’

which is the incidence sparse matrix ‘“‘element’” 2
(rows) contains “node” j (columns),

i.e., it is the rectangular sparse matrix
Element_Node of ones and zeros, of size
(number of elements) x (number of nodes).

(“node” means a number of degrees of freedom
in order to handle systems of PDESs).



The incidence
“node” 1 belongs to “element” j,

is given by the transpose of the above rectangular sparse
matrix, i.e.,

Node Element = (Element_Node)”.

One can consider a number of useful graphs (easily com-
putable)

“element_element’ =

= “element_node” x “node_element”,
“‘node_node” = “node_element” x “element_node”,
The first one shows the incidence
“element” ¢ intersects “element” 7,

whereas the second one shows the sparsity pattern of the
assembled matrix, namely,

“node” 1 is connected to “node” j (hence the entry a,; is

potentially non—zero).



4.3. Element faces

It is typical that a finite element mesh generator
can provide the element topology, namely,

“element _face’”, ‘face_element’, “face_node’
“face_face” , etc.

If these are not available, one can actually com-
pute them as follows.

The notion of “face” (similar to standard ele-
ments) is defined as a maximal intersection set,
I.e., consider all intersections

e1MNeo, €1 & €o.

A face is a maximal intersection set of the above
type, or a maximal intersection set of the type

e N “boundary surface’ .

(if special lists of nodes is given, that provide ad-
ditional information about the domain boundary)



If some of the graphs are not available one can
construct all of the following

“element_face’, ‘face_element’, ‘‘face_node”,
“face_face', etc.

based on the symbolic part of the sparse—matrix
operations. For example,

“face _face’ = ‘‘face_node’ x “node face'.



4.4. Element agglomeration

The topological information is used to devise
an algorithm to agglomerate elements — a new
overlapping partition {FE} of D where each E =
e1Ueo...Ueyp, i.e., to build the new graph

“AE_element” where AE stands for “agglom-
erated element”.

The following algorithm has the motivation to
generate “quasiuniform” “AE"s. In particular, it
will restore coarse rectangular or triangular ele-
ments (up to boundary effects).



Algorithm 1 (Agglomeration of elements)

Given the graphs

‘face_face”, ‘element_face” and ‘face_element”

and a weight function w(f) = 0, f-face, one performs:

1.

3.

find a face f with maximal w(f) > 0, then set w(f) =
—1 and add on the list of the current “AE"” the ele-
ments e1 and ey such that f = e; Nes.

update w(f1) for all f; connected to f (based on the
graph ‘“face_face” ), according to the following topo-
logical rule, w(fi1) = w(f1) + 1 if f1 is connected
to f and once more w(f1) = w(f1) +1 if f, and f
belong to a same element (here one uses the graph
“face_element”);

if for all faces f1 of the already agglomerated elements
e (here one uses the graph “element_face”) in the
current “AE” w(f1) is less than w(f) where f was the
last eliminated face, the agglomeration procedure for
the current “AE" is terminated. Then, go to step 1
or stop.



4.5. Generating coarse graphs needed for
recursion "

Assume that the graph “"AE_element’” has been
constructed (somehow), then one can build

“AE _face’ = "“"AE_element’ x “element _face’ .
I.e., the AE in terms of faces of the elements.

Now, one can define faces of agglomerated ele-
ments, “AEface”s, based on "AE _face’; namely,
each "AE" has a number of faces of the origi-
nal elements. That is, we have the lists “AE" —
“faces’ .

Intersecting two different lists, one gets the faces
of the "AE" s in terms of the faces of the original
elements.

That is, one defines the new graphs

“AEface_face’, and "AE _AEface".



Then to exploit recursion in the agglomeration
algorithm one sets:

“element face’ = “AE_AEface’,
“face element’ = “AEface AE",
“face face'': = “AEface _face' x ‘‘face _face' x

(“AEface face” )’

AS one can see no nodal information is needed.

If nodal information is needed, one can for exam-
ple compute “AEface _node" = “AEface_face' x

“face_node'’.




4.6. Vertices

Geometrically, vertices (in 2D) are nodes that
belong to two (or more) “AEface”s. For this we
need the graph

“node AEface’” = (“AEface_node” )’
which can be computed as the transpose of
“AEface _node’.

A formal definition of a vertex is a minimal in-
tersection set of the type

V(i) =n{"“AEface” : i € "AEface" }



Definition 1 (Coarse nodes) A minimal set of
coarse nodes N. C N is provided by the ver-
tices of the "“AE"”s, i.e., one forms the graph
‘node_coarsenode”;

Then one can construct,
“coarseelement_coarsenode’ =

“AE_node’ x “node_coarsenode’,
‘coarseelement_coarseface” = “AE_AEface’,
“coarseface_coarsenode’ =

“AEface_node” x “node_coarsenode’:

and hence be able to continue coarsening by recursion.

Note that the “topological” coarsening can be
independently performed (since no nodal infor-
mation was needed) and then the coarse node
selection can be carried out.

The minimal coarse sets (based on the vertices)
can be augmented by adding more nodes on the
faces at given coarsening level.



5. Examples of coarse elements
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6. Numerical Results

e anisotropic problems;
— div (el +bb1)Vu = f, posed in Q c R?,
(1)

cos 0 } for varying 0.

where e < 1 and b= { .
sin g

e 3d elasticity problems:

One notices that the construction of P is local
based on local interpolation matrices Pr com-
puted AE—wise.

Thus one can define coarse elements by perform-
ing

PLARPE;
and

Pr = [(e;), (q;), (Qr)lg -



Here, p = pr and q = qg are chosen such that

for a prescribed tolerance 6 € (0, 1],

Amax[SFl0 < A,41[SF] and

Amax[SElf < A4+1[SE]

Iteration counts and convergence factors for spectral AMGe;
unstructured triangular fine grid, anisotropic Poisson equation,
e = 0.001. Tolerance § = - = 0.0625.

Table 1

# elements 296 | 876 | 2 435 | 6 452
£ dofs 169 | 466 | 1 256 | 3281

# levels 5 6 7 9

# iterations 7 8 9 11
0 0.11 | 0.16 | 0.18 0.26
grid complexity 240 | 2.67 | 2.80 2.85
operator complexity | 3.65 | 4.51 | 4.98 5.23




Iteration counts, coarsening history and convergence factors
for spectral AMGe; unstructured triangular fine grid,
anisotropic Poisson equation; ¢ = 0.001. Tolerance ¢ = 0.25 = 211'

Table 2
level # # elm # nodes nnz entrie:
0 6452 3281 22745
1 1398 3237 42043
2 369 1916 37924
3 141 955 21843
4 61 464 11484
5 27 212 5000
6 11 126 3214
7 4 55 1169
8 2 29 503
grid compl.: | 3.131 | operator compl.: 6.415
£ iter: 11 conv. factor: 0.253




Iteration counts, coarsening history and convergence factors
for spectral AMGe; unstructured triangular fine grid,

anisotropic Poisson equation; ¢ = 0.001. Tolerance 6 = 0.5 = L

E-

Table 3
level #£ # elms # nodes nnz entries
9, 6452 3281 22745
1 1398 3237 42043
2 369 2236 48296
3 145 1512 43880
4 60 1024 41748
5 26 7’57 40639
6 11 598 52546
7 5 507 71425
8 2 481 154405
grid compl: | 4.155 | operator compl: 22.76
# ter: 10 conyv. factor: 0.233




PCG convergence results: ALE3d elasticity problem;
V(1,1)-cycle MG (GauB—Seidel smoother). Tolerance:

— — 1
= 0.03125 = .

Table 4
level # £ dofs 2 elements nnz
9, 4191 1080 286533
1 3210 250 494352
2 1798 54 562838
3 1096 12 517230
4 781 4 549777
5 671 2 431017
grid compl: | 2.802 | operator compl: | 9.917
# iter: 20 conv. factor: 0.499




PCG convergence results: ALE3d elasticity problem;
V(1,1)-cycle MG (GauB—Seidel smoother). Tolerance:
6 = 0.03125 = 3.

Table 5

level # # dofs Z elements nnz
0 1638 375 103824
1 1067 90 133489
2 619 21 133273
3 376 6 98372
4 252 2 52114
grid compl: | 2.412 | operator compl: | 5.018
# iter: 19 conv. factor: 0.479




7. References

1. A. Brandt, S. McCormick and J. W. Ruge, “Algebraic multigrid
(AMG) for sparse equations”, in: (D. J. Evans, ed.) Sparsity and
its applications (Loughborough 1983), Cambridge Univ. Press,
Cambridge, 1984, pp. 257-284.

2. A. Brandt, "“General highly accurate algebraic coarsening”, Elec-
tronic Transactions on Numerical Analysis 10(2000), 1—-20.

3. M. Brezina, A. J. Cleary, R. D. Falgout, V. E. Henson, J. E.
Jones, T. A. Manteuffel, S. F. McCormick, and J. W. Ruge,
" Algebraic Multigrid Based on Element Interpolation (AI\/IGe)
SIAM J. Sci. Comput., to appear.
http.//www.llnl.gov/CASC/Imear;solvers/pubs.html

4. V. E. Henson and P. S. Vassilevski, “Element-free AMGe: Gen-
eral algorithms for computing interpolation welghts in AMG",
preprint,
http://www linl.gov/CASC/linear_solvers/pubs.html

5. J. E. Jones and P. S. Vassilevski, “AMGe based on element ag-
glomeration”, SIAM J. Sci. Comput. (to appear),
http://www.linl.gov/CASC/linear_solvers/pubs.html

6. J. W. Ruge and K. Stiiben, “Algebraic multigrid", in: (S. Mc-
Cormick, ed.) Multigrid Methods, Philadelphia, PA, 1987, pp.
73—130

7. K. Stiliben, "Algebraic Multigrid (AMG): An Introduction with
Applications”, GMD Report 53(1999), GMD - Forschungszen-
trum Informationstechnik GmbH, Schloss Birlinghoven, Sankt
Augustin, Germany.




